login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260313
Expansion of phi(x)^2 / psi(x) in powers of x where phi(), psi() are Ramanujan theta functions.
2
1, 3, 1, -2, 3, 4, -3, -3, 2, 7, 0, -9, 4, 9, -5, -11, 6, 18, -7, -18, 9, 20, -12, -27, 14, 36, -11, -42, 18, 46, -24, -54, 23, 69, -27, -79, 37, 90, -44, -104, 48, 126, -52, -147, 65, 162, -78, -189, 85, 225, -91, -254, 114, 286, -136, -327, 142, 381, -159
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x) * chi(x)^4 = phi(-x^2) * chi(x)^3 = psi(x)^3 / psi(x^2)^2 = phi(-x^2)^4 / f(-x)^3 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of q^(1/8) * eta(q^2)^8 / (eta(q)^3 * eta(q^4)^4) in powers of q.
Euler transform of period 4 sequence [ 3, -5, 3, -1, ...].
a(n) = A153172(n) + 2*A153174(n).
EXAMPLE
G.f. = 1 + 3*x + x^2 - 2*x^3 + 3*x^4 + 4*x^5 - 3*x^6 - 3*x^7 + 2*x^8 + ...
G.f. = 1/q + 3*q^7 + q^15 - 2*q^23 + 3*q^31 + 4*q^39 - 3*q^47 - 3*q^55 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^2 2 x^(1/8) / EllipticTheta[ 2, 0, x^(1/2)], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 / (eta(x + A)^3 * eta(x^4 + A)^4), n))};
CROSSREFS
Sequence in context: A286357 A135564 A110063 * A050056 A209882 A336233
KEYWORD
sign
AUTHOR
Michael Somos, Jul 22 2015
STATUS
approved