OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x) * chi(x)^4 = phi(-x^2) * chi(x)^3 = psi(x)^3 / psi(x^2)^2 = phi(-x^2)^4 / f(-x)^3 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of q^(1/8) * eta(q^2)^8 / (eta(q)^3 * eta(q^4)^4) in powers of q.
Euler transform of period 4 sequence [ 3, -5, 3, -1, ...].
EXAMPLE
G.f. = 1 + 3*x + x^2 - 2*x^3 + 3*x^4 + 4*x^5 - 3*x^6 - 3*x^7 + 2*x^8 + ...
G.f. = 1/q + 3*q^7 + q^15 - 2*q^23 + 3*q^31 + 4*q^39 - 3*q^47 - 3*q^55 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^2 2 x^(1/8) / EllipticTheta[ 2, 0, x^(1/2)], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 / (eta(x + A)^3 * eta(x^4 + A)^4), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 22 2015
STATUS
approved