login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260102
Number of (n+2)X(4+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00000001 00000101 or 00010101
1
472, 1151, 2768, 7119, 18209, 47498, 121800, 316688, 816233, 2113881, 5460501, 14120119, 36498979, 94341890, 243940644, 630594281, 1630241143, 4214482154, 10894955883, 28166443182, 72813856778, 188242874515, 486636771766
OFFSET
1,1
COMMENTS
Column 4 of A260106
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +16*a(n-4) -29*a(n-6) +51*a(n-7) -127*a(n-8) -8*a(n-9) +366*a(n-10) -783*a(n-11) +639*a(n-12) +660*a(n-13) -2033*a(n-14) +1968*a(n-15) -1619*a(n-16) +1793*a(n-17) +3541*a(n-18) -7413*a(n-19) -1289*a(n-20) +6703*a(n-21) +3165*a(n-22) -3460*a(n-23) -14509*a(n-24) +8247*a(n-25) +4423*a(n-26) +10598*a(n-27) -15798*a(n-28) -6055*a(n-29) +16608*a(n-30) +24355*a(n-31) -7596*a(n-32) -30915*a(n-33) -13089*a(n-34) +6263*a(n-35) +16611*a(n-36) -4521*a(n-37) -4505*a(n-38) -6759*a(n-39) +14768*a(n-40) +9118*a(n-41) +2224*a(n-42) -14515*a(n-43) -4663*a(n-44) +2666*a(n-45) +5599*a(n-46) -506*a(n-47) -1079*a(n-48) -688*a(n-49) +527*a(n-50) +34*a(n-51) -2*a(n-52) -110*a(n-53) +54*a(n-54) -22*a(n-55) +22*a(n-56) -8*a(n-57) for n>59
EXAMPLE
Some solutions for n=4
..0..1..0..0..0..0....1..0..1..0..0..1....1..0..0..1..0..1....1..0..0..0..0..0
..0..0..1..0..0..1....0..1..0..0..0..0....0..0..0..0..1..0....0..0..0..0..0..0
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..1....1..0..1..0..1..0
..0..0..0..0..0..1....0..0..0..0..1..0....0..1..0..0..0..0....0..1..0..1..0..0
..0..0..1..0..0..0....0..1..0..1..0..0....0..0..1..0..0..1....1..0..0..0..1..0
..0..1..0..0..0..0....0..0..1..0..1..0....0..1..0..0..0..0....0..0..0..1..0..0
CROSSREFS
Sequence in context: A345545 A345798 A235287 * A260135 A259640 A187161
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 16 2015
STATUS
approved