login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260057
Expansion of f(-x, -x^5)^3 / (f(x, x^5) * f(-x^2, -x^2)^2) in powers of x where f(, ) is Ramanujan's general theta function.
3
1, -4, 11, -24, 48, -92, 170, -304, 526, -884, 1451, -2336, 3700, -5772, 8876, -13472, 20207, -29988, 44072, -64184, 92680, -132760, 188758, -266512, 373838, -521152, 722266, -995432, 1364684, -1861548, 2527224, -3415344, 4595497, -6157700, 8218050, -10925848
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x) * psi(x^3)^3 / (f(x)^3 * psi(-x^3)) in powers of x where psi(), f() are Ramanujan theta functions.
Expansion of q^(-2/3) * eta(q)^4 * eta(q^4)^3 * eta(q^6)^7 / (eta(q^2)^9 * eta(q^3)^4 * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [-4, 5, 0, 2, -4, 2, -4, 2, 0, 5, -4, 0, ...].
2 * a(n) = A260215(3*n + 2).
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/3)) / (4*3^(5/4)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
G.f. = 1 - 4*x + 11*x^2 - 24*x^3 + 48*x^4 - 92*x^5 + 170*x^6 - 304*x^7 + ...
G.f. = q^2 - 4*q^5 + 11*q^8 - 24*q^11 + 48*q^14 - 92*q^17 + 170*q^20 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2^(-5/2) x^(-3/4) QPochhammer[ x] / QPochhammer[ -x]^3 EllipticTheta[ 2, 0, x^(3/2)]^3 / EllipticTheta[ 2, Pi/4, x^(3/2)], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^4 + A)^3 * eta(x^6 + A)^7 / (eta(x^2 + A)^9 * eta(x^3 + A)^4 * eta(x^12 + A)), n))};
CROSSREFS
Cf. A260215.
Sequence in context: A143075 A290707 A322618 * A260150 A258472 A376710
KEYWORD
sign
AUTHOR
Michael Somos, Nov 08 2015
STATUS
approved