login
A259931
Decimal expansion of the sum of the reciprocals of the averages of adjacent pairs of perfect numbers (A000396).
0
0, 6, 2, 8, 7, 2, 2, 9, 4, 0, 9, 4, 1, 9, 7, 0, 1, 4, 8, 9, 9, 7, 6, 9, 1, 8, 9, 3, 0, 8, 7, 5, 0, 6, 2, 6, 6, 1, 6, 0, 3, 2, 7, 8, 9, 3, 1, 9, 9, 4, 8, 0, 4, 3, 8, 2, 1, 3, 1, 0, 5, 0, 8, 6, 5, 9, 6, 8, 8, 8, 4, 7, 1, 2, 3, 5, 8, 5, 7, 2, 1, 4, 9, 7, 5, 5, 2, 9, 5, 0, 0, 7, 7, 1, 0, 4, 3, 0, 7, 7, 8, 4, 1, 2, 0, 0
OFFSET
0,2
LINKS
Jonathan Bayless and Dominic Klyve, Reciprocal sums as a knowledge metric, Amer Math Monthly 120 (November, 2013) 822-831.
Steven Finch, Amicable Pairs and Aliquot Sequences, Oct 31 2013. [Cached copy, with permission of the author]
MathOverflow, Sum of the reciprocal of perfect numbers, Jun 10 2012.
José Camacho Medina's Matematico Fresnillense, La Constante entre Numeros Perfectos (in Spanish).
FORMULA
Equals Sum_{n>=1} 2/(A000396(n) + A000396(n+1)).
Equals Sum_{n>=1} 1/A259849(n).
EXAMPLE
=0.0628722940941970148997691893087506266160327893199480438213105086596888471...
= 1/17 + 1/262 + 1/4312 + 1/16779232 + 1/4311709696 + 1/73014280192 + ...
MATHEMATICA
exp = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521} (* see A000043 *); pn[k_] := 2^(exp[[k]] - 1)(2^exp[[k]] - 1); RealDigits[Sum[2/(pn[k] + pn[k + 1]), {k, 1, 12}], 10, 111][[1]] (* Robert G. Wilson v, Dec 15 2015 *)
CROSSREFS
Cf. A000396.
Sequence in context: A021618 A376079 A085589 * A333350 A332092 A021163
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More terms from Jon E. Schoenfield, Aug 19 2015
More terms from Robert G. Wilson v, Dec 15 2015
STATUS
approved