login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259761
Expansion of (phi(x)^2 + phi(x^9)^2) / 2 in powers of x where phi() is a Ramanujan theta function.
4
1, 2, 2, 0, 2, 4, 0, 0, 2, 4, 4, 0, 0, 4, 0, 0, 2, 4, 4, 0, 4, 0, 0, 0, 0, 6, 4, 0, 0, 4, 0, 0, 2, 0, 4, 0, 4, 4, 0, 0, 4, 4, 0, 0, 0, 8, 0, 0, 0, 2, 6, 0, 4, 4, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 2, 8, 0, 0, 4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 8, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
phi(x) = 1 + 2*Sum_{m=1..oo} x^(m^2). - N. J. A. Sloane, Jan 30 2017
Expansion of phi(x) * phi(x^9) + 2 * x^2 * chi(x^3)^2 * psi(-x^9)^2 in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
a(n) = 2 * b(n) with a(0) = 1 and b() is multiplicative with b(2^e) = 1, b(3^e) = 1 + (-1)^e if e>0, b(p^e) = e+1 if p == 1, 5 (mod 12), (p^e) = (1 + (-1)^e)/2 if p == 7, 11 (mod 12).
a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0.
a(2*n) = a(n). a(9*n) = A004018(n). a(6*n + 4) = 2 * A122856(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5*Pi/9 = 1.745329... (= 100 * A019685). - Amiram Eldar, Dec 29 2023
EXAMPLE
G.f. = 1 + 2*x + 2*x^2 + 2*x^4 + 4*x^5 + 2*x^8 + 4*x^9 + 4*x^10 + 4*x^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x]^2 + EllipticTheta[ 3, 0, x^9]^2) / 2, {x, 0, n}];
a[ n_] := If[ n < 1, Boole[n == 0], 2 Times @@ ( Which[ # < 3, 1, # == 3, 1 + (-1)^#2, Mod[#, 12] < 6, #2 + 1, True, (1 + (-1)^#2) / 2 ] & @@@ FactorInteger[n])];
PROG
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 1 + (-1)^e, p%12>6, (1 + (-1)^e) / 2, e+1)))};
(Magma) A := Basis( ModularForms( Gamma1(36), 1), 87); A[1] + 2*A[2] + 2*A[3] + 2*A[5] + 4*A[6] + 2*A[9] + 4*A[10] + 4*A[11] + 4*A[14] + 2*A[17] + 4*A[18] + 4*A[19];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jul 04 2015
STATUS
approved