login
A259713
a(n) = 3*2^n - 2*(-1)^n.
4
1, 8, 10, 26, 46, 98, 190, 386, 766, 1538, 3070, 6146, 12286, 24578, 49150, 98306, 196606, 393218, 786430, 1572866, 3145726, 6291458, 12582910, 25165826, 50331646, 100663298, 201326590, 402653186, 805306366, 1610612738, 3221225470, 6442450946, 12884901886
OFFSET
0,2
COMMENTS
Inverse binomial transform of 3^n, with 3 (second term) excluded.
a(n) mod 9 gives A010689.
FORMULA
a(n) = a(n-1) + 2*a(n-2) for n>1, a(0)=1, a(1)=8.
a(n) = 2*a(n-1) - 6*(-1)^n for n>0, a(0)=1.
a(4n+2) = 10*A182460(n); a(2n) = A096045(n), a(2n+1) = A140788(n).
a(n) = 3*A014551(n+1) - A201630(n).
a(n+2) - a(n) = a(n) + a(n+1) = A005010(n).
G.f.: -(7*x+1) / ((x+1)*(2*x-1)). - Colin Barker, Jul 03 2015
MATHEMATICA
Table[3 2^n - 2 (-1)^n, {n, 0, 50}] (* Vincenzo Librandi, Jul 04 2015 *)
LinearRecurrence[{1, 2}, {1, 8}, 40] (* Harvey P. Dale, Aug 19 2020 *)
PROG
(PARI) Vec(-(7*x+1)/((x+1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Jul 03 2015
(Magma) [3*2^n-2*(-1)^n: n in [0..40]]; // Vincenzo Librandi, Jul 04 2015
KEYWORD
nonn,easy,changed
AUTHOR
Paul Curtz, Jul 03 2015
EXTENSIONS
Typo in data fixed by Colin Barker, Jul 03 2015
STATUS
approved