OFFSET
1,2
COMMENTS
Obviously, a(n) is always an odd number.
EXAMPLE
a(1) = 1 because prime(2) mod prime(2) = 3 mod 3 = 0.
a(2) = 3 because (prime(2) * prime(3) * prime(4)) mod (prime(2) + prime(3) + prime(4)) = 105 mod 15 = 0.
a(3) = 5 because (prime(2) * prime(3) * prime(4) * prime(5) * prime(6)) mod (prime(2) + prime(3) + prime(4) + prime(5) + prime(6)) = 15015 mod 39 = 0.
MATHEMATICA
Module[{nn=400, op}, op=Prime[Range[2, nn+1]]; Select[Range[nn], Divisible[ Times@@ Take[op, #], Total[Take[op, #]]]&]] (* Harvey P. Dale, Nov 16 2022 *)
PROG
for(n=1, 1e3, if( prod(k=1, n, prime(k+1)) % sum(k=1, n, prime(k+1)) == 0 , print1(n", ")))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Oct 02 2015
STATUS
approved