Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jun 29 2015 15:27:18
%S 11,31,31,87,129,87,245,533,533,245,689,2219,3270,2219,689,1939,9227,
%T 20293,20293,9227,1939,5455,38409,126045,189211,126045,38409,5455,
%U 15349,159845,784130,1769635,1769635,784130,159845,15349,43185,665339,4879059
%N T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each 2X2 subblock having clockwise pattern 0000 0001 0101 0111
%C Table starts
%C .....11.......31.........87..........245............689.............1939
%C .....31......129........533.........2219...........9227............38409
%C .....87......533.......3270........20293.........126045...........784130
%C ....245.....2219......20293.......189211........1769635.........16602297
%C ....689.....9227.....126045......1769635.......25009044........355119489
%C ...1939....38409.....784130.....16602297......355119489.......7648655920
%C ...5455...159845....4879059....155863519.....5050441910.....165145291429
%C ..15349...665339...30366347...1464104971....71892362811....3570854380319
%C ..43185..2769251..189000090..13754727159..1023722858631...77252441141038
%C .121507.11526489.1176388523.129236342101.14580213573278.1671822431529063
%H R. H. Hardin, <a href="/A259515/b259515.txt">Table of n, a(n) for n = 1..419</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3)
%F k=2: a(n) = 2*a(n-1) +11*a(n-2) -4*a(n-3) -18*a(n-4)
%F k=3: [order 10]
%F k=4: [order 14]
%F k=5: [order 36]
%F k=6: [order 56]
%e Some solutions for n=4 k=4
%e ..0..0..0..0..0....0..0..1..0..1....0..0..0..0..0....1..0..1..1..1
%e ..0..1..0..0..1....0..0..0..1..0....1..0..0..0..0....0..1..0..1..0
%e ..1..0..1..0..0....0..1..0..0..1....0..1..0..0..1....0..0..1..0..0
%e ..0..1..0..1..0....1..0..0..0..0....1..0..1..0..0....0..1..0..1..0
%e ..0..0..0..0..1....0..0..1..0..0....1..1..0..0..0....1..1..1..0..0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Jun 29 2015