login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259515
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each 2X2 subblock having clockwise pattern 0000 0001 0101 0111
9
11, 31, 31, 87, 129, 87, 245, 533, 533, 245, 689, 2219, 3270, 2219, 689, 1939, 9227, 20293, 20293, 9227, 1939, 5455, 38409, 126045, 189211, 126045, 38409, 5455, 15349, 159845, 784130, 1769635, 1769635, 784130, 159845, 15349, 43185, 665339, 4879059
OFFSET
1,1
COMMENTS
Table starts
.....11.......31.........87..........245............689.............1939
.....31......129........533.........2219...........9227............38409
.....87......533.......3270........20293.........126045...........784130
....245.....2219......20293.......189211........1769635.........16602297
....689.....9227.....126045......1769635.......25009044........355119489
...1939....38409.....784130.....16602297......355119489.......7648655920
...5455...159845....4879059....155863519.....5050441910.....165145291429
..15349...665339...30366347...1464104971....71892362811....3570854380319
..43185..2769251..189000090..13754727159..1023722858631...77252441141038
.121507.11526489.1176388523.129236342101.14580213573278.1671822431529063
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3)
k=2: a(n) = 2*a(n-1) +11*a(n-2) -4*a(n-3) -18*a(n-4)
k=3: [order 10]
k=4: [order 14]
k=5: [order 36]
k=6: [order 56]
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..0..0....0..0..1..0..1....0..0..0..0..0....1..0..1..1..1
..0..1..0..0..1....0..0..0..1..0....1..0..0..0..0....0..1..0..1..0
..1..0..1..0..0....0..1..0..0..1....0..1..0..0..1....0..0..1..0..0
..0..1..0..1..0....1..0..0..0..0....1..0..1..0..0....0..1..0..1..0
..0..0..0..0..1....0..0..1..0..0....1..1..0..0..0....1..1..1..0..0
CROSSREFS
Sequence in context: A112260 A196114 A250468 * A183845 A022423 A173972
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 29 2015
STATUS
approved