OFFSET
0,1
FORMULA
Equals limit n->infinity (A063902(n)/(n!)^2)^(1/n).
Equals 32*Pi / (Gamma(1/6) * Gamma(1/3))^2.
Equals 2^(17/3) * Pi^2 / (3 * Gamma(1/3)^6).
EXAMPLE
0.4521042991834205288412808553610327940552545182281851394734731330635...
MAPLE
evalf(32*Pi / (GAMMA(1/6) * GAMMA(1/3))^2, 118);
evalf(2^(17/3) * Pi^2 / (3 * GAMMA(1/3)^6), 118);
MATHEMATICA
RealDigits[32*Pi/(Gamma[1/6]*Gamma[1/3])^2, 10, 120][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Jun 14 2015
STATUS
approved