OFFSET
1,2
COMMENTS
a(4*n) < 0 for n>=1, and a(n) is positive if n is not divisible by 4 (conjecture).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..1000
Cooper, Shaun; Hirschhorn, Michael. On Some Finite Product Identities. Rocky Mountain J. Math. 31 (2001), no. 1, 131--139.
FORMULA
a(n) = -sigma(n^2) + [Sum_{d|n^2, d==2 (mod 4)} d] + [Sum_{d|n^2, d==1,4,7 (mod 8)} 2*d].
EXAMPLE
PROG
(PARI) {a(n) = local(L=x); L = log(1 + sum(k=1, n+1, x^(k^2) + x^(2*k^2)) +x*O(x^(n^2))); n^2*polcoeff(L, n^2)}
for(n=1, 70, print1(a(n), ", "))
(PARI) {a(n) = -sigma(n^2) + sumdiv(n^2, d, if(d%4==2, d)) + 2*sumdiv(n^2, d, if((d%8)%3==1, d))}
for(n=1, 70, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 06 2015
STATUS
approved