login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258394
Number of 2n-length strings of balanced parentheses of exactly 6 different types that are introduced in ascending order.
2
132, 9009, 380380, 12864852, 383402292, 10551322782, 275335499824, 6924802684800, 169656773406120, 4078556074277685, 96700630711999860, 2269529269318731420, 52868514692841609300, 1224857602490265215010, 28265620407321158141280, 650452332645092821924080
OFFSET
6,1
LINKS
FORMULA
Recurrence: (n-4)*(n-3)*(n-2)*(n-1)*n*(n+1)*a(n) = 42*(n-4)*(n-3)*(n-2)*(n-1)*n*(2*n - 1)*a(n-1) - 700*(n-4)*(n-3)*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*a(n-2) + 5880*(n-4)*(n-3)*(n-2)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-3) - 25984*(n-4)*(n-3)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-4) + 56448*(n-4)*(2*n - 9)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-5) - 46080*(2*n - 11)*(2*n - 9)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-6). - Vaclav Kotesovec, Jun 01 2015
a(n) ~ 24^n / (720*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 01 2015
CROSSREFS
Column k=6 of A253180.
Sequence in context: A258493 A184893 A035818 * A215546 A269042 A216787
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 28 2015
STATUS
approved