login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258328
L.g.f.: log(1 + Sum_{n>=1} x^(n^2) + x^(3*n^2) ).
2
1, -1, 4, -1, 1, -4, 1, -1, 13, -11, 12, -16, 14, -15, 19, -1, 1, -13, 1, -11, 25, -12, 24, -40, 26, -14, 40, -15, 1, -29, 1, -1, 48, -35, 36, -61, 38, -39, 56, -11, 1, -39, 1, -12, 73, -24, 48, -88, 50, -36, 55, -14, 1, -40, 12, -15, 61, -59, 60, -101, 62, -63, 97, -1, 14, -48, 1, -35, 96, -60, 72, -157, 74, -38, 119, -39, 12, -56, 1, -11, 121, -83, 84, -135, 86, -87, 91, -12, 1, -83, 14, -24, 97, -48, 96, -184, 98, -64, 156, -36, 1, -89, 1, -14, 180, -107, 108, -196, 110, -132, 152, -15, 1, -99, 24, -59, 182, -60, 120, -245, 133
OFFSET
1,3
LINKS
FORMULA
a(n) = -1 iff n = 2^k for k>=1 [conjecture].
a(p) = +1 for primes p such that 3 is not a square mod p (A003630), and a(n) = +1 nowhere else except at n=0 [conjecture].
EXAMPLE
L.g.f.: L(x) = x - x^2/2 + 4*x^3/3 - x^4/4 + x^5/5 - 4*x^6/6 + x^7/7 - x^8/8 + 13*x^9/9 - 11*x^10/10 + 12*x^11/11 - 16*x^12/12 + 14*x^13/13 - 15*x^14/14 + 19*x^15/15 - x^16/16 +...+ a(n)*x^n/n +...
where
exp(L(x)) = 1 + x + x^3 + x^4 + x^9 + x^12 + x^16 + x^25 + x^27 + x^36 + x^48 + x^49 + x^64 + x^75 + x^81 + x^100 + x^108 +...+ x^(n^2) + x^(3*n^2) +...
Note that for n>1, a(n) = +1 at positions:
[5, 7, 17, 19, 29, 31, 41, 43, 53, 67, 79, 89, 101, 103, 113, 127, ...];
which appears to be A003630 (primes p such that 3 is not a square mod p).
PROG
(PARI) {a(n) = local(L=x); L = log(1 + sum(k=1, sqrtint(n+1), x^(k^2) + x^(3*k^2)) +x*O(x^n)); n*polcoeff(L, n)}
for(n=1, 121, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 03 2015
STATUS
approved