login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258277
Expansion of chi(-q) * phi(-q^3) * psi(q^3) in powers of q where chi(), phi(), psi() are Ramanujan theta functions.
15
1, -1, 0, -2, 2, -1, 0, 0, 3, 0, 0, -2, 2, -2, 0, 0, 1, -2, 0, -2, 2, -1, 0, 0, 2, 0, 0, -2, 4, 0, 0, 0, 2, -3, 0, -2, 2, 0, 0, 0, 1, 0, 0, -4, 0, -2, 0, 0, 4, -2, 0, 0, 2, -2, 0, 0, 3, 0, 0, -2, 2, 0, 0, 0, 2, -1, 0, -2, 4, -2, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Christian Kassel, Christophe Reutenauer, The Fourier expansion of eta(z)eta(2z)eta(3z)/eta(6z), arXiv:1603.06357 [math.NT], 2016.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/3) * eta(q) * eta(q^3) * eta(q^6) / eta(q^2) in powers of q.
Euler transform of period 6 sequence [ -1, 0, -2, 0, -1, -2, ...].
G.f.: Product_{k>0} (1 - x^(3*k)) * (1 - x^(6*k)) / (1 + x^k).
a(n) = (-1)^n * A122865(n).
a(2*n + 1) = - A122856(n). a(4*n) = A002175(n). a(4*n + 1) = - A122865(n). a(4*n + 2) = a(8*n + 7) = 0. a(8*n + 3) = -2 * A121444(n). a(8*n + 5) = - A122856(n).
a(n) = -A258210(3*n + 1). - Michael Somos, May 01 2016
EXAMPLE
G.f. = 1 - x - 2*x^3 + 2*x^4 - x^5 + 3*x^8 - 2*x^11 + 2*x^12 - 2*x^13 + ...
G.f. = q - q^4 - 2*q^10 + 2*q^13 - q^16 + 3*q^25 - 2*q^34 + 2*q^37 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3] QPochhammer[ x^6] / QPochhammer[ -x, x], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^6 + A) / eta(x^2 + A), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 25 2015
STATUS
approved