login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258169
a(n) = a(n-1)^4/a(n-2) with a(0)=1, a(1)=2.
1
1, 2, 16, 32768, 72057594037927936, 822752278660603021077484591278675252491367932816789931674304512
OFFSET
0,2
COMMENTS
The next term has 235 digits.
In general, the recurrence a(n) = a(n-1)^k / a(n-2) with a(0) = 1, a(1) = m, k > 2, has a solution a(n) = m^(((k+sqrt(k^2-4))^n - (k-sqrt(k^2-4))^n) / (sqrt(k^2-4) * 2^n)).
FORMULA
a(n) = 2^(A001353(n)).
a(n) = 2^(((2+sqrt(3))^n-(2-sqrt(3))^n)/(2*sqrt(3))).
MATHEMATICA
RecurrenceTable[{a[n]==a[n-1]^4/a[n-2], a[0]==1, a[1]==2}, a, {n, 0, 6}]
nxt[{a_, b_}]:={b, b^4/a}; NestList[nxt, {1, 2}, 5][[All, 1]] (* Harvey P. Dale, Sep 04 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, May 22 2015
STATUS
approved