login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258034
Expansion of phi(q) * phi(q^9) in powers of q where phi() is a Ramanujan theta function.
5
1, 2, 0, 0, 2, 0, 0, 0, 0, 4, 4, 0, 0, 4, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 4, 0, 0, 4, 0, 0, 0, 0, 8, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 8, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of eta(q^2)^5 * eta(q^18)^5 / (eta(q) * eta(q^4) * eta(q^9) * eta(q^36))^2 in powers of q.
Euler transform of period 36 sequence [2, -3, 2, -1, 2, -3, 2, -1, 4, -3, 2, -1, 2, -3, 2, -1, 2, -6, 2, -1, 2, -3, 2, -1, 2, -3, 4, -1, 2, -3, 2, -1, 2, -3, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 6 (t/i) f(t) where q = exp(2 Pi i t).
a(n) = (-1)^n * A258322(n). a(4*n) = a(n).
a(3*n + 2) = a(4*n + 3) = a(8*n + 6) = a(9*n + 3) = a(9*n + 6) = 0.
a(3*n + 1) = 2 * A122865(n). a(6*n + 4) = 2 * A122856(n). a(9*n) = A004018(n). a(12*n + 1) = 2 * A002175(n).
a(2*n) = A028601(n). - Michael Somos, Jul 04 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/3 (A019670). - Amiram Eldar, Jan 29 2024
EXAMPLE
G.f. = 1 + 2*q + 2*q^4 + 4*q^9 + 4*q^10 + 4*q^13 + 2*q^16 + 4*q^18 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^9], {q, 0, n}];
a[ n_] := Which[ n < 1, Boole[n == 0], Mod[n, 3] == 2, 0, True, 2 DivisorSum[ n, If[ Mod[n/#, 9] > 0, 1, 2] KroneckerSymbol[ -4, #] &]]; (* Michael Somos, Jul 04 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, (n+1)%3 * sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^18 + A)^5 / (eta(x + A) * eta(x^4 + A) * eta(x^9 + A) * eta(x^36 + A))^2, n))};
(PARI) {a(n) = if( n<1, n==0, n%3==2, 0, 2 * sumdiv(n, d, if(n\d%9, 1, 2) * kronecker( -4, d)))}; /* Michael Somos, Jul 04 2015 */
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); (n%3 < 2) * 2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 1 + (-1)^e, p%12>6, (1 + (-1)^e) / 2, e+1)))}; /* Michael Somos, Jul 04 2015 */
(Magma) A := Basis( ModularForms( Gamma1(36), 1), 87); A[1] + 2*A[2] + 2*A[5] + 4*A[10] + 4*A[11] + 4*A[14] + 2*A[17] + 4*A[19];
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 03 2015
STATUS
approved