login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257943
Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (1 + 3^(n-1)*(2*k - 1))/2, n,k >= 1.
1
1, 2, 2, 5, 5, 3, 14, 14, 8, 4, 41, 41, 23, 11, 5, 122, 122, 68, 32, 14, 6, 365, 365, 203, 95, 41, 17, 7, 1094, 1094, 608, 284, 122, 50, 20, 8, 3281, 3281, 1823, 851, 365, 149, 59, 23, 9, 9842, 9842, 5468, 2552, 1094, 446, 176, 68, 26, 10
OFFSET
1,2
EXAMPLE
Array A begins:
. 1 2 3 4 5 6 7 8 9 10
. 2 5 8 11 14 17 20 23 26 29
. 5 14 23 32 41 50 59 68 77 86
. 14 41 68 95 122 149 176 203 230 257
. 41 122 203 284 365 446 527 608 689 770
. 122 365 608 851 1094 1337 1580 1823 2066 2309
. 365 1094 1823 2552 3281 4010 4739 5468 6197 6926
. 1094 3281 5468 7655 9842 12029 14216 16403 18590 20777
. 3281 9842 16403 22964 29525 36086 42647 49208 55769 62330
. 9842 29525 49208 68891 88574 108257 127940 147623 167306 186989
MATHEMATICA
(* Array: *)
Grid[Table[(1 + 3^(n - 1)*(2*k - 1))/2, {n, 10}, {k, 10}]]
(* Array antidiagonals flattened: *)
Flatten[Table[(1 + 3^(n - k)*(2*k - 1))/2, {n, 10}, {k, n}]]
CROSSREFS
Sequence in context: A161622 A116559 A210802 * A008280 A239005 A236935
KEYWORD
nonn,tabl
AUTHOR
L. Edson Jeffery, May 13 2015
STATUS
approved