OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-3/8) * eta(q^2)^5 * eta(q^6)^2 / (eta(q)^2 * eta(q^3) * eta(q^4)^2) in powers of q.
Euler transform of period 12 sequence [ 2, -3, 3, -1, 2, -4, 2, -1, 3, -3, 2, -2, ...].
a(3*n + 2) = 0. a(3*n + 1) = 2 * A128591(n).
EXAMPLE
G.f. = 1 + 2*x + x^3 + 4*x^4 + 2*x^7 + 3*x^9 + 2*x^10 + 2*x^12 + 2*x^13 + ...
G.f. = q^3 + 2*q^11 + q^27 + 4*q^35 + 2*q^59 + 3*q^75 + 2*q^83 + 2*q^99 + ...
MATHEMATICA
a[ n_] := Seriescoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 2, 0, x^(3/2)] / (2 x^(3/8)), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^6 + A)^2 / (eta(x + A)^2 * eta(x^3 + A) * eta(x^4 + A)^2), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 12 2015
STATUS
approved