Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Aug 22 2015 02:14:51
%S 1,1,-1,1,-3,1,-7,1,1,-15,5,1,-31,17,-1,1,-63,49,-7,1,-127,129,-31,1,
%T 1,-255,321,-111,9,1,-511,769,-351,49,-1,1,-1023,1793,-1023,209,-11,1,
%U -2047,4097,-2815,769,-71,1,1,-4095,9217,-7423,2561,-351,13,1,-8191,20481,-18943,7937,-1471,97,-1
%N Irregular triangle read by rows: coefficients of polynomials V_n(x), highest degree terms first.
%H K. Dilcher, K. B. Stolarsky, <a href="http://dx.doi.org/10.1007/s11139-014-9620-5">Nonlinear recurrences related to Chebyshev polynomials</a>, The Ramanujan Journal, 2014, Online Oct. 2014, pp. 1-23.
%e Triangle begins:
%e 1,
%e 1, -1,
%e 1, -3,
%e 1, -7, 1,
%e 1, -15, 5,
%e 1, -31, 17, -1,
%e 1, -63, 49, -7,
%e 1, -127, 129, -31, 1,
%e 1, -255, 321, -111, 9,
%e 1, -511, 769, -351, 49, -1,
%e 1, -1023, 1793, -1023, 209, -11,
%e 1, -2047, 4097, -2815, 769, -71, 1,
%e 1, -4095, 9217, -7423, 2561, -351, 13,
%e 1, -8191, 20481, -18943, 7937, -1471, 97, -1,
%e ...
%o (PARI) tabf(nn) = {pp = 1; p = x; print(polcoeff(p, poldegree(p))); for (n=1, nn, np = 2*x*p-pp-x^(n+1); forstep (j=poldegree(np), 0, -1, if (c = polcoeff(np, j), print1(c, ", "));); pp = p; p = np; print(););} \\ _Michel Marcus_, Aug 22 2015
%Y A210197 is an essentially identical triangle.
%K sign,tabf
%O 1,5
%A _N. J. A. Sloane_, Jun 06 2015