Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Feb 13 2022 11:06:20
%S 0,0,0,1,1,5,9,18,34,58,100,164,265,421,657,1015,1549,2343,3515,5234,
%T 7745,11393,16673,24285,35220,50880,73238,105073,150286,214346,304910,
%U 432677,612581,865435,1220209,1717180,2412276,3383076,4737076,6623076,9246855
%N Expansion of x^3*(1+x+2*x^2+3*x^3+3*x^4+x^5)/(1-x^2-x^3)^3.
%H Harvey P. Dale, <a href="/A257595/b257595.txt">Table of n, a(n) for n = 0..1000</a>
%H Jean-Luc Baril, and Jean-Marcel Pallo, <a href="http://jl.baril.u-bourgogne.fr/filter.pdf">A Motzkin filter in the Tamari lattice</a>, Discrete Mathematics 338.8 (2015): 1370-1378.
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,3,-3,-6,-2,3,3,1 ).
%F G.f.: x^3*(1+x+2*x^2+3*x^3+3*x^4+x^5)/(1-x^2-x^3)^3.
%t CoefficientList[Series[x^3(1+x+2x^2+3x^3+3x^4+x^5)/(1-x^2-x^3)^3,{x,0,50}],x] (* or *) LinearRecurrence[{0,3,3,-3,-6,-2,3,3,1},{0,0,0,1,1,5,9,18,34},50] (* _Harvey P. Dale_, Feb 13 2022 *)
%K nonn,easy
%O 0,6
%A _N. J. A. Sloane_, Jun 04 2015