login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3-generalized 2-Motzkin paths of length n with no level steps H=(3,0) at even level.
0

%I #11 Mar 06 2022 08:13:26

%S 1,0,1,0,2,2,5,8,18,30,66,120,252,484,1005,1984,4110,8278,17150,35024,

%T 72748,150012,312642,649424,1358244,2837484,5954980,12497616,26313432,

%U 55434248,117062205,247412928,523881238,1110335334,2356819254,5007428384,10652412108,22682131308,48349084054,103150869360,220276819836

%N Number of 3-generalized 2-Motzkin paths of length n with no level steps H=(3,0) at even level.

%F G.f.: (1-2*x^3-sqrt((1-2*x^3)*(1-4*x^2-2*x^3)))/(2*x^2).

%F D-finite with recurrence +(n+2)*(n^2-n+3)*a(n) +(n+1)*(n^2+1)*a(n-1) -4*(n-1)*(n^2-n+3)*a(n-2) +2*(-4*n^3+11*n^2-13*n+19)*a(n-3) -2*(2*n-7)*(n^2+1)*a(n-4) +4*(2*n-11)*(n^2-n+3)*a(n-5) +4*(3*n^3-21*n^2+12*n-34)*a(n-6) +4*(n-8)*(n^2+1)*a(n-7)=0. - _R. J. Mathar_, Jun 07 2016

%t CoefficientList[Series[(1-2*x^3-Sqrt[(1-2*x^3)*(1-4*x^2-2*x^3)])/(2*x^2), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Apr 27 2015 *)

%Y Cf. A257516, A005572, A025266.

%K nonn,easy

%O 0,5

%A _José Luis Ramírez Ramírez_, Apr 27 2015