OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 54, 84, 87, 109, 174, 252, 344, 1234, 1439, 2924.
This implies the Twin Prime Conjecture.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..20000
Zhi-Wei Sun, Natural numbers represented by floor(x^2/a) + floor(y^2/b) + floor(z^2/c), arXiv:1504.01608 [math.NT], 2015.
EXAMPLE
a(1439) = 1 since 1439 = 1424 + 15 = floor(4274/3) + (-3)*(3*(-3)-1)/2 with {3*4274-1,3*4274+1} = {12821,12823} a twin prime pair.
a(2924) = 1 since 2924 = 2334 + 590 = floor(7004/3) + 20*(3*20-1)/2 with {3*7004-1, 3*7004+1} = {21011,21013} a twin prime pair.
MATHEMATICA
TQ[n_]:=PrimeQ[3n-1]&&PrimeQ[3n+1]
PQ[n_]:=TQ[3*n]||TQ[3*n+1]||TQ[3n+2]
SQ[n_]:=IntegerQ[Sqrt[24n+1]]
Do[m=0; Do[If[PQ[x]&&SQ[n-x], m=m+1], {x, 0, n-1}];
Print[n, " ", m]; Continue, {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 26 2015
STATUS
approved