login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257497
Number of ordered ways to write n as the sum of a term of A257121 and a positive generalized pentagonal number.
1
1, 2, 2, 2, 3, 2, 3, 3, 3, 2, 2, 2, 5, 2, 3, 4, 4, 4, 2, 2, 3, 4, 6, 3, 2, 5, 7, 5, 2, 4, 3, 5, 4, 3, 4, 4, 6, 5, 3, 3, 5, 4, 5, 2, 2, 5, 4, 4, 2, 3, 5, 5, 6, 1, 4, 5, 4, 3, 3, 7, 4, 2, 5, 2, 5, 4, 2, 4, 3, 6, 4, 5, 9, 4, 3, 3, 4, 8, 2, 4, 5, 3, 5, 1, 5, 4, 1, 5, 3, 2, 4, 6, 6, 3, 5, 4, 6, 5, 5, 5
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 54, 84, 87, 109, 174, 252, 344, 1234, 1439, 2924.
This implies the Twin Prime Conjecture.
EXAMPLE
a(1439) = 1 since 1439 = 1424 + 15 = floor(4274/3) + (-3)*(3*(-3)-1)/2 with {3*4274-1,3*4274+1} = {12821,12823} a twin prime pair.
a(2924) = 1 since 2924 = 2334 + 590 = floor(7004/3) + 20*(3*20-1)/2 with {3*7004-1, 3*7004+1} = {21011,21013} a twin prime pair.
MATHEMATICA
TQ[n_]:=PrimeQ[3n-1]&&PrimeQ[3n+1]
PQ[n_]:=TQ[3*n]||TQ[3*n+1]||TQ[3n+2]
SQ[n_]:=IntegerQ[Sqrt[24n+1]]
Do[m=0; Do[If[PQ[x]&&SQ[n-x], m=m+1], {x, 0, n-1}];
Print[n, " ", m]; Continue, {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 26 2015
STATUS
approved