login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257467
Smallest prime number p such that p + psq(1), p + psq(2), ... p + psq(n) are all prime but p+psq(n+1) is not. (psq(n) is the square of the primorial.)
2
2, 3, 43, 7, 163, 397, 5527, 454543, 615883, 142516687, 68967673, 57502725253, 37520993053, 2630665498987, 39809897510563
OFFSET
0,1
EXAMPLE
For prime 43, 43 + 4 and 43 + 36 are prime but not 43 + 30^2.
PROG
(PARI) psq(n)=my(P=1); forprime(p=2, prime(n), P*=p); P^2;
isokpsq(p, n) = {for (k=1, n, if (!isprime(p+psq(k)), return (0)); ); if (!isprime(p+psq(n+1)), return (1)); }
a(n) = {p = 2; while (!isokpsq(p, n), p = nextprime(p+1)); p; } \\ Michel Marcus, May 04 2015
(PARI) allprime(v, n=0)=for(i=1, #v, if(!isprime(v[i]+n), return(0))); 1
a(n)=if(n<2, return(n+2)); my(t=4, v=vector(n-1, i, t*=prime(i+1)^2), p=2); t*=prime(n+1)^2; forprime(q=3, , if(q-p==4 && allprime(v, p) && !isprime(t+p), return(p)); p=q) \\ Charles R Greathouse IV, May 05 2015
CROSSREFS
KEYWORD
hard,nonn
AUTHOR
Fred Schneider, Apr 25 2015
EXTENSIONS
a(13)-a(14) from Fred Schneider, May 16 2015
STATUS
approved