login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257389
Number of 3-generalized Motzkin paths of length n with no level steps H=(3,0) at odd level.
2
1, 0, 1, 1, 2, 2, 6, 6, 17, 21, 54, 74, 183, 272, 644, 1025, 2342, 3928, 8734, 15264, 33227, 59989, 128484, 238008, 503563, 952038, 1995955, 3835381, 7987092, 15548654, 32223061, 63388488, 130918071, 259724317, 535168956, 1069025128
OFFSET
0,5
LINKS
FORMULA
G.f.: (1-x^3-sqrt((1-x^3)*(1-4*x^2-x^3)))/(2*x^2*(1-x^3)).
a(n) = Sum_{k=0..n/3}(((-1)^(n-3*k)+1)*(binomial((n-k)/2,k)*(binomial(n-3*k,(n-3*k)/2))/((n-3*k+2)))). - Vladimir Kruchinin, Apr 02 2016
(2 + n)*a(n) + (14 + 4*n)*a(n + 1) + (-10 - 2*n)*a(n + 3) + (-20 - 4*n)*a(n + 4) + (8 + n)*a(n + 6) = 0. - Robert Israel, Nov 04 2019
EXAMPLE
For n=6 we have 6 paths: UDUDUD, H3H3, UUDUDD, UUUDDD, UDUUDD and UUDDUD, where H3=(3,0).
MAPLE
f:= gfun:-rectoproc({(2 + n)*a(n) + (14 + 4*n)*a(n + 1) + (-10 - 2*n)*a(n + 3) + (-20 - 4*n)*a(n + 4) + (8 + n)*a(n + 6), a(0) = 1, a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 2, a(5) = 2}, a(n), remember):
map(f, [$0..100]); # Robert Israel, Nov 04 2019
PROG
(Maxima)
a(n):=sum(((-1)^(n-3*k)+1)*((binomial((n-k)/2, k) )*(binomial(n-3*k, (n-3*k)/2))/((n-3*k+2))), k, 0, (n)/3); /* Vladimir Kruchinin, Apr 02 2016 */
KEYWORD
nonn
AUTHOR
STATUS
approved