login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257154
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column minus the sum of the minimums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally
14
512, 2848, 2848, 13504, 16677, 13504, 62579, 96680, 101227, 62579, 281213, 541896, 732482, 594229, 281213, 1223367, 3009795, 5352986, 5449304, 3374539, 1223367, 5203324, 16759085, 40203005, 51899365, 39971674, 19028310, 5203324, 21804750
OFFSET
1,1
COMMENTS
Table starts
......512......2848.......13504........62579.........281213.........1223367
.....2848.....16677.......96680.......541896........3009795........16759085
....13504....101227......732482......5352986.......40203005.......303570406
....62579....594229.....5449304.....51899365......519390250......5227360394
...281213...3374539....39971674....502447661.....6713096472.....90781754582
..1223367..19028310...295114929...4926932828....88719570970...1618913713517
..5203324.106805258..2183417807..48470017991..1174259463543..28823946919854
.21804750.596053900.16144616160.476479552209.15502395045146.511817645366610
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 16] for n>20
k=2: [order 44] for n>50
k=3: [order 79] for n>87
Empirical for row n:
n=1: [linear recurrence of order 16] for n>20
n=2: [order 57] for n>62
EXAMPLE
Some solutions for n=2 k=4
..0..1..0..0..1..0....0..1..0..0..1..0....0..1..0..1..0..1....0..0..0..0..0..1
..1..0..0..0..0..1....0..0..0..0..0..1....1..0..0..0..1..0....0..0..0..0..0..1
..1..0..0..0..0..1....1..0..0..0..0..1....1..0..0..0..1..1....1..0..0..0..1..0
..0..1..1..0..1..0....0..0..1..1..1..1....1..1..1..1..1..1....1..1..1..0..0..1
CROSSREFS
Column 1 and row 1 are A254736
Sequence in context: A254922 A254253 A254915 * A254743 A254736 A254586
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 16 2015
STATUS
approved