OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
K. Bringmann and J. Lovejoy, Overpartitions and class numbers of binary quadratic forms. See page 5, Corollary 1.6(iv), equation (1.12)
FORMULA
G.f.: (1 + 8 * Sum_{k > 0} (-1)^k * x^(k^2 + k) / (1 + (-x)^k)^2) / (1 + 2 * Sum_{k > 0} x^k^2).
a(n) = (-1)^n * A153181(n). - Michael Somos, Jul 12 2015
EXAMPLE
G.f. = 1 - 2*x - 4*x^2 - 8*x^3 - 10*x^4 - 8*x^5 - 8*x^6 - 16*x^7 - 20*x^8 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (1 + 8 Sum[ (-1)^ k x^(k^2 + k) / (1 + (-x)^k)^2, {k, (Sqrt[4 n + 1] - 1)/2}]) / EllipticTheta[ 3, 0, x], {x, 0, n}]]; Table[a[n], {n, 0, 50}]
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 + 8 * sum(k=1, (sqrtint(4*n + 1)-1)\2, (-1)^k * x^(k^2 + k) / (1 + (-x)^k)^2 , A)) / (1 + 2 * sum(k=1, sqrtint(n), x^k^2, A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 11 2015
STATUS
approved