login
A256554
Number T(n,k) of cycle types of degree-n permutations having the k-th smallest possible order; triangle T(n,k), n>=0, 1<=k<=A009490(n), read by rows.
6
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 1, 1, 1, 4, 2, 4, 1, 5, 1, 1, 1, 1, 1, 1, 4, 3, 4, 1, 7, 1, 1, 1, 2, 2, 1, 1, 1, 1, 5, 3, 6, 2, 9, 1, 2, 1, 3, 4, 1, 1, 1, 1, 1, 1, 5, 3, 6, 2, 12, 1, 2, 1, 4, 1, 6, 2, 2, 1, 2, 1, 1, 1, 2
OFFSET
0,9
COMMENTS
Sum_{k>=0} A256553(n,k)*T(n,k) = A181844(n).
LINKS
EXAMPLE
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 2, 1, 1, 1, 1;
1, 3, 2, 2, 1, 2;
1, 3, 2, 2, 1, 3, 1, 1, 1;
1, 4, 2, 4, 1, 5, 1, 1, 1, 1, 1;
1, 4, 3, 4, 1, 7, 1, 1, 1, 2, 2, 1, 1, 1;
1, 5, 3, 6, 2, 9, 1, 2, 1, 3, 4, 1, 1, 1, 1, 1;
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, x,
b(n, i-1)+(p-> add(coeff(p, x, t)*x^ilcm(t, i),
t=1..degree(p)))(add(b(n-i*j, i-1), j=1..n/i)))
end:
T:= n->(p->seq((h->`if`(h=0, [][], h))(coeff(p, x, i))
, i=1..degree(p)))(b(n$2)):
seq(T(n), n=0..12);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x, b[n, i - 1] + Function[p, Sum[Coefficient[p, x, t]*x^LCM[t, i], {t, 1, Exponent[p, x]}]][Sum[b[n - i*j, i - 1], {j, 1, n/i}]]]; T[n_] := Function[p, Table[Function[h, If[h == 0, {{}, {}}, h]][Coefficient[p, x, i]], {i, 1, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 23 2017, translated from Maple *)
CROSSREFS
Row sums give A000041.
Row lengths give A009490.
Columns k=1-9 give: A000012, A004526, A002264, A008642(n-4), A002266, A074752, A132270, A008643(n-8) for n>7, A008649(n-9) for n>8.
Last elements of rows give A074064.
Main diagonal gives A074761.
Sequence in context: A287170 A216784 A256067 * A321649 A003650 A059233
KEYWORD
nonn,look,tabf
AUTHOR
Alois P. Heinz, Apr 01 2015
STATUS
approved