%I #31 Sep 29 2021 02:34:39
%S 1,1,2,6,24,119,694,4578,33184,258757,2136978,18478134,165857600,
%T 1535336290,14584260700,141603589300,1400942032152,14087464765300,
%U 143689133196008,1484090443264936,15499968503875136,163501005435759505,1740170514634463426,18671118911254798454
%N Number of permutations in S_n that avoid the pattern 25314.
%H Anthony Guttmann, <a href="/A256195/b256195.txt">Table of n, a(n) for n = 0..26</a>
%H Nathan Clisby, Andrew R. Conway, Anthony J. Guttmann, Yuma Inoue, <a href="https://arxiv.org/abs/2109.13485">Classical length-5 pattern-avoiding permutations</a>, arXiv:2109.13485 [math.CO], 2021.
%H Zvezdelina Stankova-Frenkel and Julian West, <a href="http://arxiv.org/abs/math/0103152">A new class of Wilf-equivalent permutations</a>, arXiv:math/0103152 [math.CO], 2001.
%t avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
%t lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
%t psn = Permutations[Range[n]]},
%t For[i = 1, i <= Length[lpat], i++,
%t p = lpat[[i]];
%t AppendTo[lseq, Select[psn, MemberQ[#, {___, p[[p1]], ___, p[[p2]], ___, p[[p3]], ___, p[[p4]], ___, p[[p5]], ___}, {0}] &]];
%t ]; n! - Length[Union[Flatten[lseq, 1]]]];
%t Table[avoid[n, {2, 5, 3, 1, 4}], {n, 0, 8}] (* _Robert Price_, Mar 27 2020 *)
%Y Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208.
%Y Cf. A099952.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Mar 19 2015
%E a(14)-a(16) from _Bert Dobbelaere_, Mar 18 2021
%E More terms from _Anthony Guttmann_, Sep 29 2021