login
A256195
Number of permutations in S_n that avoid the pattern 25314.
17
1, 1, 2, 6, 24, 119, 694, 4578, 33184, 258757, 2136978, 18478134, 165857600, 1535336290, 14584260700, 141603589300, 1400942032152, 14087464765300, 143689133196008, 1484090443264936, 15499968503875136, 163501005435759505, 1740170514634463426, 18671118911254798454
OFFSET
0,3
LINKS
Nathan Clisby, Andrew R. Conway, Anthony J. Guttmann, Yuma Inoue, Classical length-5 pattern-avoiding permutations, arXiv:2109.13485 [math.CO], 2021.
Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
MATHEMATICA
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
psn = Permutations[Range[n]]},
For[i = 1, i <= Length[lpat], i++,
p = lpat[[i]];
AppendTo[lseq, Select[psn, MemberQ[#, {___, p[[p1]], ___, p[[p2]], ___, p[[p3]], ___, p[[p4]], ___, p[[p5]], ___}, {0}] &]];
]; n! - Length[Union[Flatten[lseq, 1]]]];
Table[avoid[n, {2, 5, 3, 1, 4}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
CROSSREFS
Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208.
Cf. A099952.
Sequence in context: A369098 A264781 A224316 * A256196 A256197 A256198
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 19 2015
EXTENSIONS
a(14)-a(16) from Bert Dobbelaere, Mar 18 2021
More terms from Anthony Guttmann, Sep 29 2021
STATUS
approved