OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Iaroslav V. Blagouchine, Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results, The Ramanujan Journal, Volume 35, Issue 1, pp. 21-110, 2014, DOI: 10.1007/s11139-013-9528-5. PDF file
Wikipedia, Carl Malmsten
FORMULA
Equals integral_{x=0..1} log(log(1/x))/(1 + x)^2 dx.
Equals integral_{x=0..infinity} 0.5*log(x)/(1 + cosh(x)) dx.
Equals (log(Pi) - log(2) - gamma)/2.
EXAMPLE
-0.0628164798060389979401584300937601437351823286924336...
MAPLE
evalf((log(Pi/2)-gamma)/2, 120); # Vaclav Kotesovec, Mar 17 2015
MATHEMATICA
RealDigits[(Log[Pi/2]-EulerGamma)/2, 10, 105][[1]] (* Vaclav Kotesovec, Mar 17 2015 *)
PROG
(PARI) (-Euler+log(Pi)-log(2))/2 \\ Michel Marcus, Mar 18 2015
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Iaroslav V. Blagouchine, Mar 15 2015
STATUS
approved