login
A256129
Decimal expansion of the fourth Malmsten integral: int_{x=1..infinity} log(log(x))/(1 + x)^2 dx, negated.
5
0, 6, 2, 8, 1, 6, 4, 7, 9, 8, 0, 6, 0, 3, 8, 9, 9, 7, 9, 4, 0, 1, 5, 8, 4, 3, 0, 0, 9, 3, 7, 6, 0, 1, 4, 3, 7, 3, 5, 1, 8, 2, 3, 2, 8, 6, 9, 2, 4, 3, 3, 6, 4, 0, 7, 0, 6, 4, 1, 2, 0, 8, 6, 4, 5, 3, 0, 6, 1, 7, 8, 9, 4, 3, 1, 2, 6, 6, 6, 5, 3, 3, 7, 9, 5, 9, 3, 5, 6, 0, 0, 0, 6, 3, 3, 7, 8, 6, 4, 6, 7, 7, 3, 1, 1, 5, 5, 8
OFFSET
0,2
LINKS
Iaroslav V. Blagouchine, Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results, The Ramanujan Journal, Volume 35, Issue 1, pp. 21-110, 2014, DOI: 10.1007/s11139-013-9528-5. PDF file
Wikipedia, Carl Malmsten
FORMULA
Equals integral_{x=0..1} log(log(1/x))/(1 + x)^2 dx.
Equals integral_{x=0..infinity} 0.5*log(x)/(1 + cosh(x)) dx.
Equals (log(Pi) - log(2) - gamma)/2.
EXAMPLE
-0.0628164798060389979401584300937601437351823286924336...
MAPLE
evalf((log(Pi/2)-gamma)/2, 120); # Vaclav Kotesovec, Mar 17 2015
MATHEMATICA
RealDigits[(Log[Pi/2]-EulerGamma)/2, 10, 105][[1]] (* Vaclav Kotesovec, Mar 17 2015 *)
PROG
(PARI) (-Euler+log(Pi)-log(2))/2 \\ Michel Marcus, Mar 18 2015
CROSSREFS
A115252 (first Malmsten integral), A256127 (second Malmsten integral), A256128 (third Malmsten integral), A002162 (log 2), A053510 (log Pi), A001620 (Euler's constant, gamma).
Sequence in context: A177889 A086744 A242301 * A019692 A031259 A059629
KEYWORD
nonn,cons
AUTHOR
STATUS
approved