login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256022
Number of (n+2) X (1+2) 0..1 arrays with no 3 x 3 subblock diagonal sum 0 or 1 and no antidiagonal sum 0 or 1 and no row sum 1 and no column sum 1.
1
33, 68, 154, 352, 798, 1804, 4086, 9304, 21194, 48176, 109506, 249120, 566754, 1289056, 2931842, 6668688, 15168650, 34502104, 78476674, 178499728, 406009530, 923494792, 2100545026, 4777818256, 10867446266, 24718685528, 56224184050
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) -a(n-2) +4*a(n-3) -2*a(n-6) -4*a(n-7) +2*a(n-9) for n>10.
Empirical g.f.: x*(33 + 2*x + 51*x^2 - 20*x^3 - 24*x^4 - 56*x^5 - 66*x^6 + 12*x^7 + 36*x^8 + 2*x^9) / ((1 - x)*(1 - x - 4*x^3 - 4*x^4 - 4*x^5 - 2*x^6 + 2*x^7 + 2*x^8)). - Colin Barker, Dec 20 2018
EXAMPLE
Some solutions for n=4:
..1..0..1....0..1..1....0..1..1....1..1..0....0..1..1....1..1..1....1..1..1
..1..1..1....1..1..0....1..1..1....1..1..1....1..1..1....1..0..1....1..1..1
..1..1..0....1..1..1....1..0..1....1..1..1....1..1..1....1..1..1....1..0..1
..0..1..1....1..1..1....1..1..1....1..1..0....0..1..1....1..1..0....1..1..1
..1..1..1....0..1..1....1..1..1....0..1..1....1..1..1....0..1..1....0..1..1
..1..0..1....1..1..1....1..0..1....1..1..1....1..0..1....1..0..1....1..1..0
CROSSREFS
Column 1 of A256029.
Sequence in context: A032661 A256029 A055078 * A044135 A044516 A015722
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 13 2015
STATUS
approved