login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255983
a(n) = 1 for n <= 5; a(n) = 36*a(n-1) - 450*a(n-2) + 3000*a(n-3) - 11250*a(n-4) + 22500*a(n-5) - 18750*a(n-6) otherwise.
5
1, 1, 1, 1, 1, 1, -4914, -181854, -4339944, -89153184, -1746815574, -33850986114, -655203251304, -12686085675144, -245683477042884, -4758284508073524, -92156792465163564, -1784855834560787004, -34568319709081645344, -669504074781304567584, -12966661247726595160224
OFFSET
0,7
COMMENTS
a(n)/a(n-1) tends to 19.367561... = 6 + 6^(1/6) + 6^(2/6) + 6^(3/6) + 6^(4/6) + 6^(5/6), the largest real root of the polynomial x^6 - 36*x^5 + 450*x^4 - 3000*x^3 + 11250*x^2 - 22500*x + 18750.
In general, the polynomial x^6 - k6*x^5 - k5*x^4 - k4*x^3 - k3*x^2 - k2*x -k1 has a root r+b*m^(1/6)+c*m^(2/6)+d*m^(3/6)+g*m^(4/6)+h*m^(5/6), see links for coefficients k1, k2, k3, k4, k5, k6.
LINKS
Alexander Samokrutov, Table of n, a(n) for n = 0..25
Index entries for linear recurrences with constant coefficients, signature (36,-450,3000,-11250,22500,-18750).
FORMULA
a(n) = 36*a(n-1) - 450*a(n-2) + 3000*a(n-3) - 11250*a(n-4) + 22500*a(n-5) - 18750*a(n-6).
G.f.: -(13835*x^5-8665*x^4+2585*x^3-415*x^2+35*x-1) / (18750*x^6-22500*x^5+11250*x^4-3000*x^3+450*x^2-36*x+1). - Colin Barker, Mar 23 2015
MATHEMATICA
LinearRecurrence[{36, -450, 3000, -11250, 22500, -18750}, {1, 1, 1, 1, 1, 1}, 30] (* Vincenzo Librandi, Mar 21 2015 *)
PROG
(Magma) [n le 6 select 1 else 36*Self(n-1)-450*Self(n-2)+3000*Self(n-3)-11250*Self(n-4)+22500*Self(n-5)-18750*Self(n-6): n in [1..30]]; // Vincenzo Librandi, Mar 21 2015
(PARI) Vec(-(13835*x^5-8665*x^4+2585*x^3-415*x^2+35*x-1) / (18750*x^6-22500*x^5+11250*x^4-3000*x^3+450*x^2-36*x+1) + O(x^100)) \\ Colin Barker, Mar 23 2015
CROSSREFS
Sequence in context: A114770 A013807 A013884 * A043480 A028550 A091878
KEYWORD
sign,easy
AUTHOR
STATUS
approved