login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Five-digit distinct-digit zeroless primes.
1

%I #17 Mar 19 2015 07:21:28

%S 12347,12379,12437,12457,12473,12479,12487,12497,12539,12547,12569,

%T 12583,12589,12637,12647,12653,12659,12689,12697,12739,12743,12763,

%U 12853,12893,12953,12967,12973,12983,13249,13259,13267,13297,13457

%N Five-digit distinct-digit zeroless primes.

%C The last term is a(1610)=98731.

%C Intersection of A038618 and A074671. - _Michel Marcus_, Mar 16 2015

%H Zak Seidov, <a href="/A255964/b255964.txt">Table of n, a(n) for n = 1..1610</a>

%t f[n_] := Block[{d = DigitCount@ n}, And[Plus @@ d == 5, Last@ d == 0, Max@ d == 1, PrimeQ@ n]]; Select[Range[10000, 99999], f] (* or *) Select[FromDigits /@ Permutations[Range[1, 9], {5}], PrimeQ] (* _Michael De Vlieger_, Mar 12 2015 *)

%Y Cf. A038618 (zeroless primes), A074671 (5-digit distinct-digit primes).

%K nonn,base,fini,full

%O 1,1

%A _Zak Seidov_, Mar 12 2015