OFFSET
0,3
FORMULA
a(n) = a(n-1)+sum(k=1..n/2, (n-1)!/(n-2*k)!*(1/(2*k-1))*a(n-2*k)), a(0)=1.
a(n) ~ (n-2)! * (exp(1) + (-1)^n*exp(-1)). - Vaclav Kotesovec, Feb 24 2015
MATHEMATICA
CoefficientList[Series[Sqrt[1-x^2]*E^(x*(1+Log[(1+x)/(1-x)]/2)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 24 2015 *)
PROG
(Maxima)
a(n):=if n=0 then 1 else a(n-1)+sum((n-1)!/(n-2*k)!*(1/(2*k-1))*a(n-2*k), k, 1, n/2);
(PARI) default(seriesprecision, 50); Vec(serlaplace(sqrt(1-t^2)*exp(t*(1+atanh(t))) + O(t^50)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Feb 23 2015
STATUS
approved