login
A255236
All positive solutions x of the second class of the Pell equation x^2 - 2*y^2 = -7.
6
5, 31, 181, 1055, 6149, 35839, 208885, 1217471, 7095941, 41358175, 241053109, 1404960479, 8188709765, 47727298111, 278175078901, 1621323175295, 9449763972869, 55077260661919, 321013799998645, 1871005539329951, 10905019435981061, 63559111076556415
OFFSET
0,1
COMMENTS
For the corresponding y = y2 terms see 2*A038725(n+1).
The Pell equation x^2 - 2*y^2 = 7 has two classes of solutions. See, e.g., the Nagell reference and comments under A254938 and A255233. Here the positive solutions based on the fundamental solution (5, 4) (the second largest positive solution) are considered.
The positive solutions of the first class are given in (A054490(n), 2*A038723(n)), n >= 0.
The combined solutions of both classes are given in (A077446, 4*A077447).
The solutions (x(n), y(n)) of x^2 - 2*y^2 = -7 translate to the solutions (X(n), Y(n)) = (2*y(n) , x(n)) of the Pell equation X^2 - 2*Y^2 = 14.
FORMULA
a(n) = 5*S(n, 6) + S(n-1, 6), n >= 0, with the Chebyshev polynomials S(n, x) (A049310), with S(-1, x) = 0, evaluated at x = 6. S(n, 6) = A001109(n-1).
G.f.: (5 + x)/(1 - 6*x + x^2).
a(n) = 6*a(n-1) - a(n-2), n >= 2, with a(-1) = -1 and a(0) = 5.
a(n) = 2*A038761(n) + A038762(n), n >= 0. See the Mar 19 comment on A054490. - Wolfdieter Lang, Mar 19 2015
a(n) = ((3-2*sqrt(2))^n*(-8+5*sqrt(2)) + (3+2*sqrt(2))^n*(8+5*sqrt(2))) / (2*sqrt(2)). - Colin Barker, Oct 13 2015
EXAMPLE
n = 2: 181^2 - 2*(2*64)^2 = -7; (4*64)^2 - 2*181^2 = 14.
n = 2: 2*53 + 75 = 181. - Wolfdieter Lang, Mar 19 2015
MATHEMATICA
CoefficientList[Series[(5 + x) / (1 - 6 x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
PROG
(PARI) Vec((5 + x)/(1 - 6*x + x^2) + O(x^30)) \\ Michel Marcus, Mar 20 2015
(Magma) I:=[5, 31]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 20 2015
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 26 2015
STATUS
approved