login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255180
Number of partitions of n in which two summands (of each size) are designated.
1
1, 0, 1, 3, 7, 10, 20, 24, 45, 61, 103, 140, 246, 325, 517, 728, 1086, 1472, 2184, 2918, 4197, 5638, 7875, 10497, 14625, 19272, 26354, 34804, 46992, 61490, 82471, 107163, 142128, 184141, 241701, 311282, 406164, 519755, 672726, 858110, 1102872
OFFSET
0,4
LINKS
FORMULA
G.f.: Product_{n>=1} 1 + x^(2*n)/(1 - x^n)^3.
EXAMPLE
a(4)=7. In order to designate two summands of each size, the multiplicity of each summand must be at least two. For n=4 we consider only the partitions 2+2 and 1+1+1+1. In the first case there is 1 way and in the second case there are 6 ways. 1 + 6 = 7.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-i*j, i-1)*binomial(j, 2), j=2..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Mar 19 2015
MATHEMATICA
nn = 40; CoefficientList[Series[Product[1 + x^(2 n)/(1 - x^n)^3, {n, 1, nn}], {x, 0, nn}], x]
CROSSREFS
Cf. A077285, A070933 (where any number of summands of any size are designated).
Sequence in context: A000223 A366044 A031328 * A053159 A345891 A279912
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Mar 19 2015
STATUS
approved