OFFSET
1,2
FORMULA
A(n,k) = A(n,k-3) + 2^(n+2), n >= 1, k > 3, with initial conditions A(n,1) = (1 + 2^n*(3 + 2*(-1)^n))/3, A(n,2) = 2^(n+1), A(n,3) = A(n,1) + 2^(n+1).
A(n,k) == (1 + 2^n*(3 + 2*(-1)^n))/3 (mod 2^(n+1) or 2^(n+1) (mod 2^(n+2)).
EXAMPLE
Array A begins:
. 1 4 5 9 12 13 17 20 21 25
. 7 8 15 23 24 31 39 40 47 55
. 3 16 19 35 48 51 67 80 83 99
. 27 32 59 91 96 123 155 160 187 219
. 11 64 75 139 192 203 267 320 331 395
. 107 128 235 363 384 491 619 640 747 875
. 43 256 299 555 768 811 1067 1280 1323 1579
. 427 512 939 1451 1536 1963 2475 2560 2987 3499
. 171 1024 1195 2219 3072 3243 4267 5120 5291 6315
. 1707 2048 3755 5803 6144 7851 9899 10240 11947 13995
MATHEMATICA
(* Array antidiagonals flattened: *)
a[n_, 1] := (1 + 2^n*(3 + 2*(-1)^n))/3; a[n_, 2] := 2^(n + 1); a[n_, 3] := a[n, 1] + 2^(n + 1); a[n_, k_] := a[n, k - 3] + 2^(n + 2); Flatten[Table[a[n - k + 1, k], {n, 10}, {k, n}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
L. Edson Jeffery, May 04 2015
STATUS
approved