login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255092
Least prime p such that p+n is product of (n+1) primes (with multiplicity).
2
2, 3, 43, 13, 239, 59, 171869, 569, 32797, 2551, 649529, 6133, 1708984363, 57331, 103630981, 65521, 301327031, 262127, 82244873046857, 11943917, 38354628391, 26214379, 679922958173, 37748713, 584125518798828101, 553648103, 7625597484961, 2281701349, 882592301503097, 8153726947
OFFSET
0,1
COMMENTS
For n>0, terms with odd indices 3, 13, 59, 569... are much smaller than neighbor terms with even indices.
For n > 0, a(n) >= A053669(n)^(n+1) - n. - Robert Israel, Sep 25 2024
LINKS
EXAMPLE
2+0=2(prime), 3+1=4=2*2, 43+2=45=3*3*5, 13+3=16=2^4, 239+4=243=3^5,59+5=64=2^6,171869+6=171875=5^6*11,569+7=574=2^6*3^2,
32797+8=32805=3^5*5, 2551+9=2590=2^9*5, 649529+10=649539=3^10*11, 6133+11=6143=2^11*3.
MAPLE
f:= proc(n)
uses priqueue;
local pq, t, v, p, w, i;
initialize(pq);
p:= 2;
while n mod p = 0 do p:= nextprime(p) od;
insert([-p^(n+1), [p$(n+1)]], pq);
do
t:= extract(pq);
v:= -t[1]; w:= t[2];
if isprime(v-n) then return v-n fi;
p:= nextprime(w[-1]);
while n mod p = 0 do p:= nextprime(p) od:
for i from n+1 to 1 by -1 while w[i] = w[n+1] do
insert([t[1]*(p/w[n+1])^(n+2-i), [op(w[1..i-1]), p$(n+2-i)]], pq);
od od
end proc:
f(0):= 2:
map(f, [$0..40]); # Robert Israel, Sep 25 2024
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Zak Seidov, Feb 14 2015
EXTENSIONS
More terms from Robert Israel, Sep 25 2024
STATUS
approved