login
A254703
Number of length 5+4 0..n arrays with every five consecutive terms having the maximum of some two terms equal to the minimum of the remaining three terms.
1
136, 2310, 16276, 72271, 242076, 670372, 1618264, 3520845, 7060672, 13259026, 23586828, 40097083, 65580724, 103747728, 159435376, 238845529, 349812792, 502105438, 707760964, 981458151, 1340927500, 1807401916, 2406109512
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (13/35)*n^7 + (13/2)*n^6 + 26*n^5 + 41*n^4 + (327/10)*n^3 + (39/2)*n^2 + (125/14)*n + 1.
Conjectures from Colin Barker, Dec 17 2018: (Start)
G.f.: x*(136 + 1222*x + 1604*x^2 - 873*x^3 - 204*x^4 - 20*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=4:
..0....3....1....0....3....3....0....0....4....2....2....1....2....1....0....2
..3....2....3....4....1....3....2....3....3....2....1....3....3....4....2....1
..1....3....0....2....1....3....1....0....3....2....1....2....2....4....1....2
..1....1....0....3....2....3....3....0....3....3....1....2....0....1....4....1
..4....2....0....2....1....3....1....0....1....3....1....4....4....1....1....1
..0....3....1....2....3....0....1....0....4....2....3....2....2....1....0....0
..2....2....0....4....1....3....4....2....3....2....1....2....3....1....1....2
..1....3....0....2....1....3....1....0....4....2....0....3....2....4....1....1
..1....2....3....1....0....4....1....4....3....1....3....0....2....0....1....4
CROSSREFS
Row 5 of A254698.
Sequence in context: A235190 A249985 A072897 * A333110 A250424 A251940
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 05 2015
STATUS
approved