login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254645
Fourth partial sums of sixth powers (A001014).
7
1, 68, 995, 7672, 40614, 166992, 571626, 1701480, 4534959, 11050468, 24997973, 53113424, 106959580, 205628736, 379603812, 676144944, 1166649837, 1956528420, 3198236503, 5108229896, 7988730530, 12255340240
OFFSET
1,2
FORMULA
G.f.: x*(1 + 57*x + 302*x^2 + 302*x^3 + 57*x^4 + x^5)/(1 - x)^11.
a(n) = n*(1 + n)*(2 + n)^2*(3 + n)*(4 + n)*(- 1 - 8*n + 14*n^2 + 8*n^3 + n^4)/5040.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^6.
EXAMPLE
First differences: 1, 63, 665, 3367, 11529, 31031, ... (A022522)
--------------------------------------------------------------------------
The sixth powers: 1, 64, 729, 4096, 15625, 46656, ... (A001014)
--------------------------------------------------------------------------
First partial sums: 1, 65, 794, 4890, 20515, 67171, ... (A000540)
Second partial sums: 1, 66, 860, 5750, 26265, 93436, ... (A101093)
Third partial sums: 1, 67, 927, 6677, 32942, 126378, ... (A101099)
Fourth partial sums: 1, 68, 995, 7672, 40614, 166992, ... (this sequence)
MAPLE
seq(binomial(n+4, 5)*(n+2)*((n^2+4*n-1)^2-2)/42, n=1..30); # G. C. Greubel, Aug 28 2019
MATHEMATICA
Table[n (1 + n) (2 + n)^2 (3 + n) (4 + n) (- 1 - 8 n + 14 n^2 + 8 n^3 + n^4)/5040, {n, 22}] (* or *)
Accumulate[Accumulate[Accumulate[Accumulate[Range[22]^6]]]] (* or *)
CoefficientList[Series[(- 1 - 57 x - 302 x^2 - 302 x^3 - 57 x^4 - x^5)/(- 1 + x)^11, {x, 0, 21}], x]
Nest[Accumulate, Range[30]^6, 4] (* or *) LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {1, 68, 995, 7672, 40614, 166992, 571626, 1701480, 4534959, 11050468, 24997973}, 30] (* Harvey P. Dale, Dec 27 2015 *)
PROG
(PARI) vector(30, n, binomial(n+4, 5)*(n+2)*((n^2+4*n-1)^2-2)/42) \\ G. C. Greubel, Aug 28 2019
(Magma) [Binomial(n+4, 5)*(n+2)*((n^2+4*n-1)^2-2)/42: n in [1..30]]; // G. C. Greubel, Aug 28 2019
(Sage) [binomial(n+4, 5)*(n+2)*((n^2+4*n-1)^2-2)/42 for n in (1..30)] # G. C. Greubel, Aug 28 2019
(GAP) List([1..30], n-> Binomial(n+4, 5)*(n+2)*((n^2+4*n-1)^2-2)/42); # G. C. Greubel, Aug 28 2019
CROSSREFS
Cf. A254644 (fourth partial sums of fifth powers), A254646 (fourth partial sums of seventh powers).
Sequence in context: A250338 A223374 A360656 * A281049 A264316 A251939
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Feb 05 2015
STATUS
approved