Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Apr 17 2022 23:03:14
%S 512,2812,2812,12616,14681,12616,54236,72644,59531,54236,236024,
%T 382316,268900,223357,236024,1021428,1989857,1420232,718226,888391,
%U 1021428,4351908,10193041,7815717,2983064,2192422,3647288,4351908,18369164
%N T(n,k) = Number of (n+2) X (k+2) 0..1 arrays with every 3 X 3 subblock sum of the two maximums of the diagonal and antidiagonal minus the sum of the minimums of the central row and column nondecreasing horizontally, vertically and ne-to-sw antidiagonally.
%C Table starts
%C .......512.......2812.....12616......54236.....236024.....1021428......4351908
%C ......2812......14681.....72644.....382316....1989857....10193041.....52034327
%C .....12616......59531....268900....1420232....7815717....43088793....240716320
%C .....54236.....223357....718226....2983064...12249828....49369118....197326142
%C ....236024.....888391...2192422....9308828...35691048...159041102....742483152
%C ...1021428....3647288...6729896...29231312...87535036...325742026...1249946456
%C ...4351908...15380009..21120938...98883824..214982444...933774220...3756830312
%C ..18369164...65954108..68298122..378114160..718305580..3391678348..14833693096
%C ..77344420..284203166.216717474.1430424048.1845854060..9927463676..43837197480
%C .325241108.1230877185.690324184.5564609520.5194299052.34363573228.151675299240
%H R. H. Hardin, <a href="/A254260/b254260.txt">Table of n, a(n) for n = 1..638</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 17],
%F k=2: [order 21] for n>25,
%F k=3: [order 13] for n>19,
%F k=4: [order 12] for n>18,
%F k=5: [order 14] for n>21,
%F k=6: [order 12] for n>20,
%F k=7: [order 17] for n>25.
%F Empirical for row n:
%F n=1: [same linear recurrence of order 17],
%F n=2: [order 32] for n>37,
%F n=3: [order 41] for n>47,
%F n=4: [order 41] for n>50,
%F n=5: [order 47] for n>58,
%F n=6: [order 53] for n>67,
%F n=7: [order 65] for n>82.
%e Some solutions for n=2, k=4
%e ..1..0..1..1..0..1....0..1..0..0..1..0....1..0..0..1..0..0....0..0..1..1..1..1
%e ..1..1..1..0..1..1....1..0..0..0..0..1....1..0..0..0..0..1....0..0..1..0..0..1
%e ..0..0..1..0..0..0....0..0..0..1..0..0....0..0..0..0..1..1....1..1..0..1..1..0
%e ..1..1..0..1..1..1....1..1..1..1..1..1....0..1..1..0..0..0....0..1..1..1..0..0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Jan 27 2015