login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254260
T(n,k) = Number of (n+2) X (k+2) 0..1 arrays with every 3 X 3 subblock sum of the two maximums of the diagonal and antidiagonal minus the sum of the minimums of the central row and column nondecreasing horizontally, vertically and ne-to-sw antidiagonally.
15
512, 2812, 2812, 12616, 14681, 12616, 54236, 72644, 59531, 54236, 236024, 382316, 268900, 223357, 236024, 1021428, 1989857, 1420232, 718226, 888391, 1021428, 4351908, 10193041, 7815717, 2983064, 2192422, 3647288, 4351908, 18369164
OFFSET
1,1
COMMENTS
Table starts
.......512.......2812.....12616......54236.....236024.....1021428......4351908
......2812......14681.....72644.....382316....1989857....10193041.....52034327
.....12616......59531....268900....1420232....7815717....43088793....240716320
.....54236.....223357....718226....2983064...12249828....49369118....197326142
....236024.....888391...2192422....9308828...35691048...159041102....742483152
...1021428....3647288...6729896...29231312...87535036...325742026...1249946456
...4351908...15380009..21120938...98883824..214982444...933774220...3756830312
..18369164...65954108..68298122..378114160..718305580..3391678348..14833693096
..77344420..284203166.216717474.1430424048.1845854060..9927463676..43837197480
.325241108.1230877185.690324184.5564609520.5194299052.34363573228.151675299240
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 17],
k=2: [order 21] for n>25,
k=3: [order 13] for n>19,
k=4: [order 12] for n>18,
k=5: [order 14] for n>21,
k=6: [order 12] for n>20,
k=7: [order 17] for n>25.
Empirical for row n:
n=1: [same linear recurrence of order 17],
n=2: [order 32] for n>37,
n=3: [order 41] for n>47,
n=4: [order 41] for n>50,
n=5: [order 47] for n>58,
n=6: [order 53] for n>67,
n=7: [order 65] for n>82.
EXAMPLE
Some solutions for n=2, k=4
..1..0..1..1..0..1....0..1..0..0..1..0....1..0..0..1..0..0....0..0..1..1..1..1
..1..1..1..0..1..1....1..0..0..0..0..1....1..0..0..0..0..1....0..0..1..0..0..1
..0..0..1..0..0..0....0..0..0..1..0..0....0..0..0..0..1..1....1..1..0..1..1..0
..1..1..0..1..1..1....1..1..1..1..1..1....0..1..1..0..0..0....0..1..1..1..0..0
CROSSREFS
Sequence in context: A250504 A250820 A250497 * A254306 A258530 A254922
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 27 2015
STATUS
approved