login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254126
The number of tilings of a 5 X n rectangle using integer length rectangles with at least one length of size 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1, 4 X 1, 5 X 1.
7
1, 16, 533, 22873, 1064576, 50796983, 2441987149, 117656540512, 5672528575545, 273541357254277, 13191518965300160, 636171495829068099, 30680036092304563369, 1479579136691648516016, 71354395560692698401005, 3441147782121276015384833, 165953315828852845775456128
OFFSET
0,2
COMMENTS
Let G_n be the graph with vertices {(a,b) : 1<=a<=9, 1<=b<=2n-1, a+b odd} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1. Then a(n) is the number of independent sets in G_n.
LINKS
FORMULA
G.f: (1 - 58*x + 799*x^2 - 4041*x^3 + 8286*x^4 - 7357*x^5 + 2660*x^6 - 312*x^7)/(1 - 74*x + 1450*x^2 - 10672*x^3 + 34214*x^4 - 50814*x^5 + 34671*x^6 - 9772*x^7 + 936*x^8).
CROSSREFS
Column k=5 of A254414.
Sequence in context: A263907 A222099 A362520 * A220729 A196298 A361310
KEYWORD
nonn,easy
AUTHOR
Steve Butler, Jan 25 2015
STATUS
approved