login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254116
Permutation of natural numbers: a(n) = A064216(A254103(n)).
5
1, 2, 3, 4, 5, 6, 7, 8, 13, 10, 11, 12, 9, 14, 17, 16, 41, 26, 23, 20, 15, 22, 19, 24, 67, 18, 37, 28, 47, 34, 29, 32, 27, 82, 61, 52, 73, 46, 43, 40, 89, 30, 21, 44, 59, 38, 31, 48, 111, 134, 107, 36, 57, 74, 33, 56, 149, 94, 79, 68, 83, 58, 25, 64, 359, 54, 181, 164, 193, 122, 101, 104, 229, 146, 49, 92, 85, 86, 71, 80, 185, 178, 139, 60, 95, 42, 39
OFFSET
1,2
FORMULA
a(n) = A064216(A254103(n)).
Other identities. For all n >= 1:
a(n) = a(2n)/2. [Even bisection halved gives back the sequence itself.]
A254118(n) = (a((2*n)+1) - 1)/2. [Likewise, the odd bisection induces A254118.]
PROG
(PARI)
default(primelimit, 2^30);
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A064216(n) = A064989((2*n)-1);
A254103(n) = { if(0==n, 0, if(!(n%2), (3*A254103(n/2))-1, (3*(1+A254103((n-1)/2)))\2)); };
for(n=1, 8192, write("b254116.txt", n, " ", A254116(n)));
(Scheme) (define (A254116 n) (A064216 (A254103 n)))
(Python)
from sympy import factorint, prevprime, floor
from operator import mul
def a064216(n):
f=factorint(2*n - 1)
return 1 if n==1 else reduce(mul, [prevprime(i)**f[i] for i in f])
def a254103(n):
if n==0: return 0
if n%2==0: return 3*a254103(n/2) - 1
else: return floor((3*(1 + a254103((n - 1)/2)))/2)
def a(n): return a064216(a254103(n)) # Indranil Ghosh, Jun 06 2017
CROSSREFS
Inverse: A254115.
Fixed points: A254099.
Related permutations: A064216, A254103, A254118.
Sequence in context: A271831 A180628 A165306 * A254115 A032986 A032977
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 04 2015
STATUS
approved