login
A254070
a(n) = -1 + (3/2)^(-1 + v(1 + F(4*n - 3)))*(1 + F(4*n - 3)), where v(y) is the 2-adic valuation of y, F(x) = (3*x + 1)/2^v(3*x + 1), and x == 1 (mod 2).
4
1, 1, 17, 5, 13, 1, 29, 17, 25, 17, 161, 17, 37, 5, 65, 53, 49, 13, 125, 29, 61, 1, 101, 53, 73, 29, 269, 41, 85, 17, 137, 161, 97, 25, 233, 53, 109, 17, 173, 89, 121, 161, 1457, 65, 133, 17, 209, 161, 145, 37, 341, 77, 157, 5, 245, 125, 169, 65, 593, 89, 181, 53, 281, 485, 193, 49, 449, 101, 205, 13
OFFSET
1,3
COMMENTS
a(n) is the first successor in the 3x+1 trajectory of 4*n-3 that is congruent to 1 mod 4. - Ruud H.G. van Tol, Jul 16 2023
LINKS
FORMULA
a(n) = 4*A257480(n) - 3. - L. Edson Jeffery, Mar 29 2021
MATHEMATICA
v[y_] := IntegerExponent[y, 2]; f[x_] := (3*x + 1)/2^v[3*x + 1]; s[n_] := -1 + (3/2)^(-1 + v[1 + f[4*n - 3]])*(1 + f[4*n - 3]); Table[s[n], {n, 70}] (* L. Edson Jeffery, Mar 29 2021 *)
PROG
(PARI) a(n) = my(x=3*n-2, v=valuation(x, 2)); x>>=v; v=valuation(x+1, 2)-1; ((x>>v)+1)*3^v-1; \\ Ruud H.G. van Tol, Jul 16 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
L. Edson Jeffery, May 03 2015
EXTENSIONS
New name by L. Edson Jeffery, Mar 29 2021
STATUS
approved