login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A253937
Primes p such that 4+p^7, 4+p^9 and 4+p^11 are also prime.
2
82609, 1032607, 1859479, 2158447, 4952173, 5009593, 5828353, 6779833, 11316859, 11370727, 12786157, 13872853, 14117053, 15082783, 15645697, 15935989, 16715623, 20102569, 21310603, 22106569, 22164253, 23674597, 26012953, 26325613, 29592919, 30086347, 30306637
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 82609:
4 + 82609^7 = 26253762656881427836948640304009173;
4 + 82609^9 = 179162157925737357103123335151825463343651893;
4 + 82609^11 = 1222646797417942588836172615268162579679296234658008213;
all four are prime.
MATHEMATICA
Select[Prime[Range[1, 2000000]], PrimeQ[4 + #^7] && PrimeQ[4 + #^9] && PrimeQ[4 + #^11] &]
PROG
(PARI) forprime(p=1, 1e7, if(isprime(4+p^7) && isprime(4+p^9) && isprime(4+p^11), print1(p, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jan 19 2015
STATUS
approved