login
A253905
Decimal expansion of zeta(3)/zeta(2).
16
7, 3, 0, 7, 6, 2, 9, 6, 9, 4, 0, 1, 4, 3, 8, 4, 9, 8, 7, 2, 6, 0, 3, 6, 7, 3, 1, 3, 0, 7, 7, 1, 4, 6, 3, 9, 5, 2, 8, 0, 1, 1, 6, 0, 5, 0, 7, 9, 3, 7, 4, 4, 7, 0, 0, 7, 1, 3, 2, 5, 3, 5, 6, 6, 1, 6, 9, 0, 7, 6, 3, 0, 6, 7, 8, 4, 8, 5, 5, 6, 8, 2, 6, 7, 0, 7, 0, 0, 3, 7, 1, 4, 0, 9, 8, 7, 9, 0, 3, 2, 8, 8, 6, 5
OFFSET
0,1
COMMENTS
Three positive integers b, c, m are randomly selected (with replacement) from {1, 2, ..., n}. Let P(n) be the probability that the congruence b * x == c (mod m) has a solution. zeta(3)/zeta(2) is the limit of P(n) as n goes to infinity.
LINKS
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 154.
FORMULA
Equals Product_{p prime} (1 - 1/(p^2 + p + 1)). - Amiram Eldar, Jun 11 2023
Equals Sum_{k>=1} A023900(k)/k^3. - Amiram Eldar, Jan 25 2024
EXAMPLE
0.73076296940143849872603673130771463952801160507937...
MATHEMATICA
Drop[Flatten[RealDigits[N[Zeta[3]/Zeta[2], 75]]], -2]
PROG
(PARI) zeta(3)/zeta(2) \\ Charles R Greathouse IV, Apr 20 2016
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Geoffrey Critzer, Jan 18 2015
STATUS
approved