login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253507
Number of (n+2) X (5+2) 0..1 arrays with every 2 X 2 and 3 X 3 subblock diagonal maximum minus antidiagonal minimum nondecreasing horizontally and vertically.
1
884, 1712, 3052, 5136, 7948, 11740, 16592, 22720, 30300, 39560, 50740, 64104, 79936, 98540, 120240, 145380, 174324, 207456, 245180, 287920, 336120, 390244, 450776, 518220, 593100, 675960, 767364, 867896, 978160, 1098780, 1230400, 1373684
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (5/6)*n^4 + 9*n^3 + (1135/6)*n^2 + 361*n - 300 for n>8.
Conjectures from Colin Barker, Dec 17 2018: (Start)
G.f.: 4*x*(221 - 677*x + 833*x^2 - 461*x^3 + 22*x^4 + 129*x^5 - 110*x^6 + 77*x^7 - 44*x^8 + 23*x^9 - 10*x^10 + 3*x^11 - x^12) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>13.
(End)
EXAMPLE
Some solutions for n=4:
..1..1..1..1..1..1..1....0..1..1..1..1..1..1....0..1..1..1..1..1..1
..1..1..1..1..1..1..1....1..1..1..1..1..1..1....1..1..1..1..0..0..0
..1..1..1..1..1..1..1....1..1..1..1..1..0..1....1..1..1..1..1..1..1
..1..1..1..1..1..1..0....1..1..1..1..1..0..1....1..1..1..0..0..0..0
..1..1..1..1..1..1..1....1..1..1..1..1..0..1....1..1..1..1..1..1..1
..1..1..1..0..0..0..0....0..0..0..0..1..0..1....1..1..0..0..0..0..0
CROSSREFS
Column 5 of A253510.
Sequence in context: A206964 A209089 A207131 * A282156 A318200 A295443
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 02 2015
STATUS
approved