login
A253476
Indices of centered triangular numbers (A005448) which are also centered heptagonal numbers (A069099).
3
1, 15, 70, 1596, 7645, 175491, 840826, 19302360, 92483161, 2123084055, 10172306830, 233519943636, 1118861268085, 25685070715851, 123064567182466, 2825124258799920, 13535983528803121, 310737983397275295, 1488835123601160790, 34178353049441482476
OFFSET
1,2
COMMENTS
Also positive integers x in the solutions to 3*x^2 - 7*y^2 - 3*x + 7*y = 0, the corresponding values of y being A253477.
FORMULA
a(n) = a(n-1)+110*a(n-2)-110*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(14*x^3+55*x^2-14*x-1) / ((x-1)*(x^4-110*x^2+1)).
EXAMPLE
15 is in the sequence because the 15th centered triangular number is 316, which is also the 10th centered heptagonal number.
MATHEMATICA
LinearRecurrence[{1, 110, -110, -1, 1}, {1, 15, 70, 1596, 7645}, 30] (* Harvey P. Dale, Jun 14 2016 *)
PROG
(PARI) Vec(x*(14*x^3+55*x^2-14*x-1)/((x-1)*(x^4-110*x^2+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jan 02 2015
STATUS
approved