login
A253418
Number of (n+2)X(2+2) nonnegative integer arrays with all values the knight distance from the upper left minus as much as 1, with successive minimum path knight move differences either 0 or +1, and any unreachable value zero.
1
56, 131, 1087, 2827, 10411, 15803, 41139, 52297, 111085, 130089, 241833, 270699, 459463, 500207, 794663, 849301, 1282729, 1353277, 1963565, 2052039, 2881683, 2990099, 4086203, 4216577, 5630853, 5785201, 7573969, 7754307, 9978495
OFFSET
1,1
COMMENTS
Column 2 of A253424.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +4*a(n-2) -4*a(n-3) -6*a(n-4) +6*a(n-5) +4*a(n-6) -4*a(n-7) -a(n-8) +a(n-9) for n>15.
Empirical for n mod 2 = 0: a(n) = 12*n^4 + (46/3)*n^3 + (577/4)*n^2 - (17195/6)*n + 8989 for n>6.
Empirical for n mod 2 = 1: a(n) = 12*n^4 + (190/3)*n^3 + (41/4)*n^2 - (7123/3)*n + (26887/4) for n>6.
EXAMPLE
Some solutions for n=2
..0..2..2..4....0..3..2..4....0..2..2..4....0..2..2..4....0..3..2..4
..2..3..1..2....3..3..1..2....2..3..0..1....2..3..1..2....2..3..1..2
..2..1..3..2....2..1..3..2....1..1..3..2....1..1..3..2....2..1..3..2
..4..2..2..1....4..2..2..1....4..1..2..1....4..1..2..1....4..2..3..1
Knight distance matrix for n=2
..0..3..2..5
..3..4..1..2
..2..1..4..3
..5..2..3..2
CROSSREFS
Sequence in context: A135803 A048452 A306935 * A204840 A204833 A121736
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 31 2014
STATUS
approved